CSC 2541: Machine Learning for Healthcare

Lecture 3: Causal inference with observational data

Professor Marzyeh Ghassemi, PhD University of Toronto, CS/Med Vector Institute

Schedule

Mar 28, 2019, Course Presentations

```
Jan 10, 2019, Lecture 1: Why is healthcare unique?
Jan 17, 2019, Lecture 2: Supervised Learning for Classification, Risk Scores and Survival
Jan 24, 2019, Lecture 3: Causal inference with observational data
Jan 31, 2019, Lecture 4: Fairness, Ethics, and Healthcare
Feb 7, 2019, Lecture 5: Clinical Time Series Modelling (Homework 1 due at 11:59 PM on MarkUs)
Feb 14, 2019, Lecture 6: Clinical Imaging (Project proposals due at 5PM on MarkUs)
Feb 21, 2019, Lecture 7: Clinical NLP and Audio
Feb 28, 2019, Lecture 8: Clinical Reinforcement Learning
Mar 7, 2019, Lecture 9: Missingness and Representations
Mar 14, 2019, Lecture 10: Generalization and transfer learning
Mar 21, 2019, Lecture 11: Interpretability / Humans-In-The-Loop / Policies and Politics
```

April 4, 2019, Course Presentations (Project report due 11:59PM)

- 1. What is confounding?
- 2. Why causal reasoning?
- 3. Potential Outcomes and Propensity Scoring
- 4. Pearlean Causal Graphs Framework
- 5. Project ideas

- 1. What is confounding?
- 2. Why causal reasoning?
- 3. Potential Outcomes and Propensity Scoring
- 4. Pearlean Causal Graphs Framework
- 5. Project ideas

Motivational Questions

- Find which medication A/B is best for diabetics?
- Should I deploy this new feature in company's product?
- Would this person be rejected for the job had their name been different?

Bring in the Machine Learning Hammer

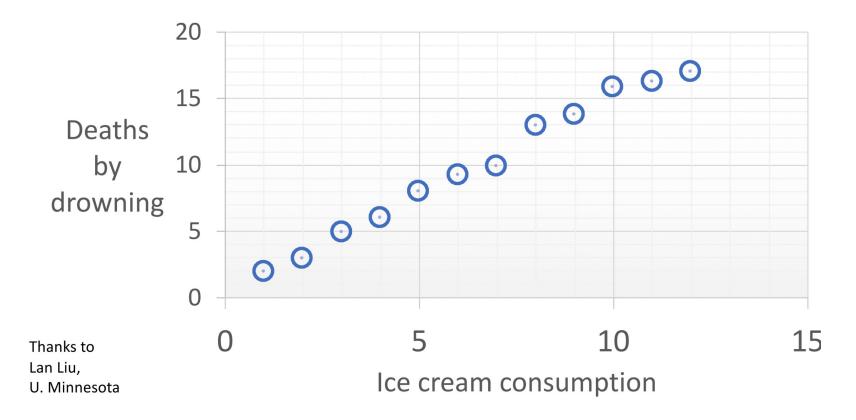
Supervised Classification only learns "associations" p(y|x)

```
X = [lab_tests, diagnoses, medications]
```

y = [severely_diabetic]

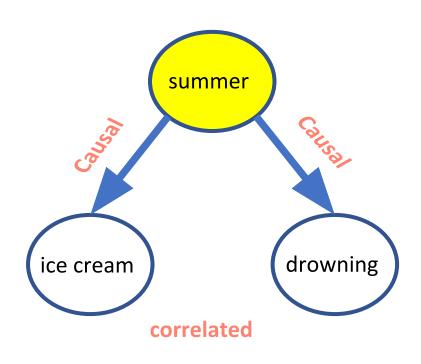
Mostly just correlations

Can you spot the confounding?



Consider the Optics?

- Does eating ice-cream cause death by drowning?
- Is something else causing both these phenomena?
- Could we realistically have some randomly chosen humans eat lots of ice-cream and see if what happens?
- In a healthcare setting, one cannot risk death because of the treatment!

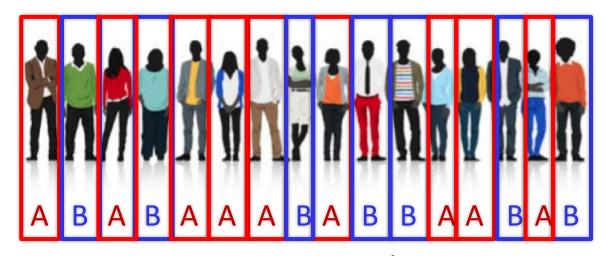


Confounding!

Randomized Controlled Trials Vs. Observational Data

treatment

Randomized Controlled Trials



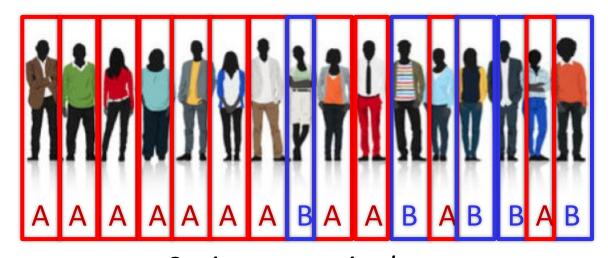
Poor

Socio-economic class

Wealthy

treatment

More Common: Observational Setting



Poor Socio-economic class

Wealthy

treatment

Clinical Setting

- RCTs are also known as "clinical trials"
 - Tens of thousands every year, costing tens of billions of dollars
 - Every new medication must pass several stages of RCTs before approval for human use
- Observational study
 - Use existing data, tracking people's medications and blood sugar
 - Problem: the space of possible confounders

- 1. What is confounding?
- 2. Why causal reasoning?
- 3. Potential Outcomes and Propensity Scoring
- 4. Pearlean Causal Graphs Framework
- 5. Project ideas

Supervised Learning Isn't Enough

- This is not a classic supervised learning problem; our model was optimized to predict outcome, not to differentiate the influence of A vs. B
- What if our high-dimensional model threw away the feature of medication A/B?
- Hidden confounding: Maybe using B is worse than A, but rich patients usually take B and richer people also have better health outcomes.
- If we don't know whether a patient is rich or not, we might conclude B is better

Causal Hierarchy (not captured by mere associations)

- Observational Questions: "What if we see A"
- Action Questions: "What if we do A?"
- Counterfactuals Questions: "What if we did things differently?"
- Options: "With what probability?"

Two foundational ways to think of Causality

- Potential Outcomes (Rubin, Neyman)
- Causal Graphical Models (Judea Pearl)

Either framework requires manipulating reality

- 1. What is confounding?
- 2. Why causal reasoning?
- 3. Potential Outcomes and Propensity Scoring
- 4. Pearlean Causal Graphs Framework
- 5. Project ideas

Potential Outcomes

- Unit: a person, a bacteria, a company, a school, a website, a family, a piece of metal, ...
- Treatments / actions / interventions (A/B)
- Potential outcomes

Y1: the unit's outcome had they been subjected to treatment t=1

Y0: the unit's outcome had they been subjected to treatment t=0. If number of treatments is T, we have T potential outcomes (T possibly infinite)

• In observations, a single unit gets one of the T treatments

Inferring under this framework requires assumptions

SUTVA: Stable Unit Treatment Value Assumption

• The potential outcomes for any unit do not vary with the treatments assigned to other units

Failure example: vaccination, network effects

- For each unit, there are no different forms or versions of each treatment level, which lead to different potential outcomes
 - Failure example: some people get out-of-date medication
- Consistency: p(Yt=y|X=x, T=t) = p(Y=y|X=x, T=t)

Potential Outcomes Formalized

- •• Sample of units i = 1, ..., n
- Each has potential outcomes $(Y_0^1, Y_1^1), \dots, (Y_0^n, Y_1^n)$
- Individual Treatment Effect for unit i:

$$ITE_i \equiv Y_1^i - Y_0^i$$

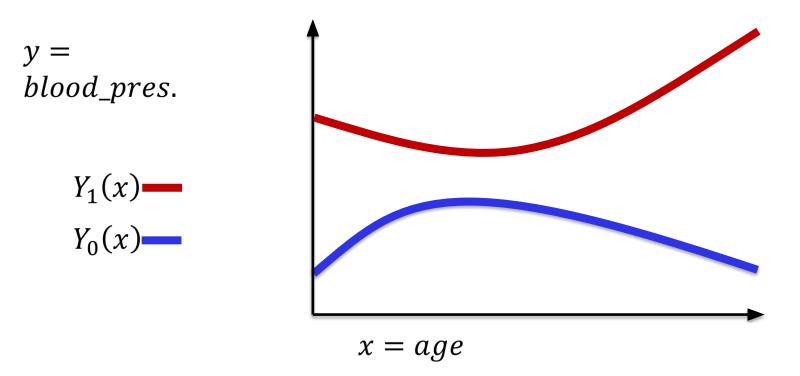
Average Treatment Effect over the sample

$$ATE_{finite} \equiv \frac{1}{n} \sum_{i=1}^{n} Y_1^i - Y_0^i$$

• Usually: assume some joint distribution $p(Y_0, Y_1)$

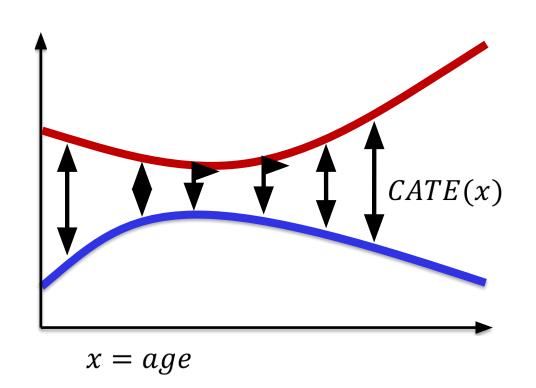
$$ATE \equiv \mathbb{E}[Y_1 - Y_0]$$

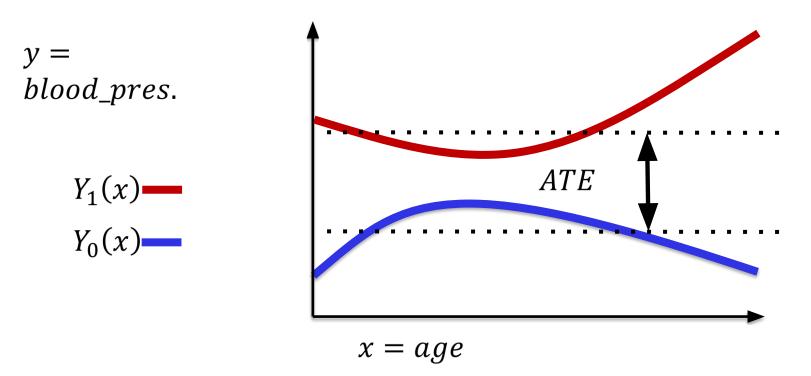
• Define average over which population ("diabetics living in Israel over age 65")

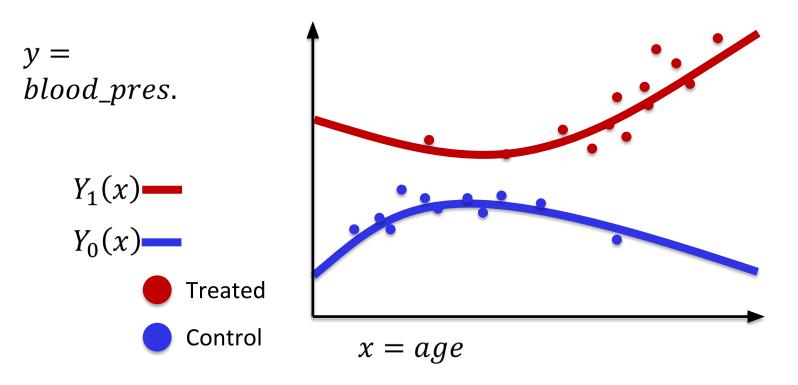


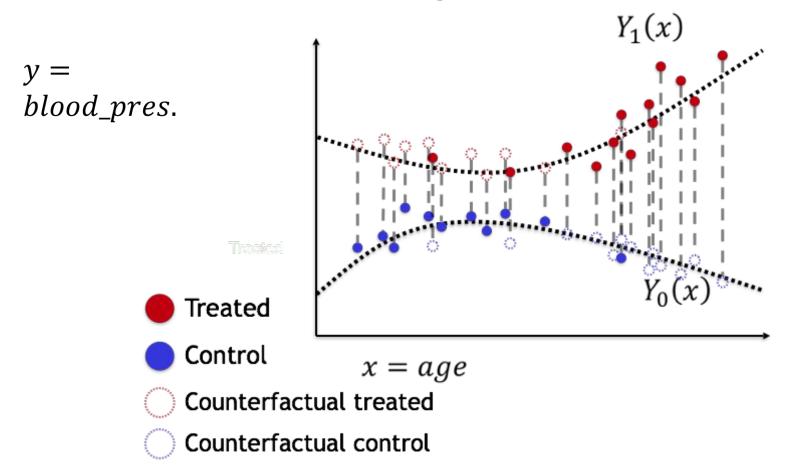
 $blood_pres.$

 $Y_1(x)$ $Y_0(x)$









"The fundamental problem of causal inference"

We only ever observe one of the two outcomes

Estimation Example

Gender	Treatment	Y ₀ : Sugar levels had they received treatment 0	Y ₁ : Sugar levels had they received treatment 1	Y: Observed sugar levels
М	0	8	10	8
М	0	8	10	8
М	0	8	10	8
М	1	8	10	10
F	0	4	6	4
F	1	4	6	6
F	1	4	6	6
F	1	4	6	6

Estimation

• True treatment effect:

$$\mathbb{E}[Y_1 - Y_0] = 2$$

$$\mathbb{E}[Y|t=1] - \mathbb{E}[Y|t=0] = \frac{1}{4}(10+6+6+6) + \frac{1}{4}(8+8+8+4) =$$

$$7 - 7 = 0$$

Gender	Treatm ent	Y ₀ : Sugar levels had they received treatment 0	Y ₁ : Sugar levels had they received treatment 1	Y: Observed sugar levels
М	0	8	10	8
М	0	8	10	8
М	0	8	10	8
М	1	8	10	10
F	0	4	6	4
F	1	4	6	6
F	1	4	6	6
F	1	4	6	6

Estimation

True treatment effect:

$$\mathbb{E}[Y_1 - Y_0] = 2$$

$$\mathbb{E}[Y|t=1] = 7$$

 $\mathbb{E}[Y|t=0] = 7$

$$\mathbb{E}[Y|t=0, Gender=M]=8$$

 $\mathbb{E}[Y|t=1, Gender=M]=10$

$$\mathbb{E}[Y|t=0, Gender=F]=4$$

 $\mathbb{E}[Y|t=1, Gender=F]=6$

Within each group we get the true treatment effect!

Gender	Treatm ent	Y ₀ : Sugar levels had they received treatment 0	Y ₁ : Sugar levels had they received treatment 1	Y: Observed sugar levels
М	0	8	10	8
М	0	8	10	8
М	0	8	10	8
М	1	8	10	10
F	0	4	6	4
F	1	4	6	6
F	1	4	6	6
F	1	4	6	6

Treatment Assignment Mechanism

$$Y_0 = 4+4*G$$

 $Y_1 = 4+4*G+2$

•
$$p(t=1|G=1) = 0.25$$

 $p(t=1|G=0) = 0.75$

Gender	Treatm ent	Y ₀ : Sugar levels had they received treatment 0	Y ₁ : Sugar levels had they received treatment 1	Y: Observed sugar levels
М	0	8	10	8
М	0	8	10	8
М	0	8	10	8
М	1	8	10	10
F	0	4	6	4
F	1	4	6	6
F	1	4	6	6
F	1	4	6	6

Random Treatment Assignments

They work because it allows to get expectations from observations!

- Treatment is random:
 - $(Y_0, Y_1) \perp T$
- $\mathbb{E}[Y_1] =$
- $\mathbb{E}[Y_1|T=1] =$
- $\mathbb{E}[Y_{obs}|T=1]$ Can be estimated from data

- Treatment is random: $(Y_0, Y_1) \perp T$
- $\mathbb{E}[Y_0] =$
- $\mathbb{E}[Y_0 | T = 0] =$
- $\mathbb{E}[Y_{obs}|T=0]$

Can be estimated from data

Completely Random Treatment Assignments

They work because it allows to get expectations from observations!

- Treatment is random:
 - $(Y_0, Y_1) \perp T$
- $\mathbb{E}[Y_1] =$
- $\mathbb{E}[Y_1 | T = 1] =$
- $\mathbb{E}[Y_{obs}|T=1]$ Can be estimated from data

- Treatment is random: $(Y_0, Y_1) \perp T$
- $\mathbb{E}[Y_0] =$
- $\mathbb{E}[Y_0 | T = 0] =$
- $\mathbb{E}[Y_{obs}|T=0]$

Can be estimated from data

$$ATE = \mathbb{E}[Y_1 - Y_0] = \\ \mathbb{E}[Y_1] - \mathbb{E}[Y_0] = \\ \mathbb{E}[Y_{obs}|T = 1] - \mathbb{E}[Y_{obs}|T = 0]$$

Note the difference because unobservable quantities (potential outcomes) and observable quantities

Treatment Assignment Is Not Random!

Gender	Treatment	Y _o : Sugar levels had they received treatment 0	Y₁: Sugar levels had they received treatment 1	Y: Observed sugar levels
M	0	8	10	8
M	0	8	10	8
M	0	8	10	8
M	1	8	10	10
F	0	4	6	4
F	1	4	6	6
F	1	4	6	6
F	1	4	6	6

Treatment Assignment Is Not Random!

$$P(Y_0 = 8|T = 0) = 0.75$$

 $P(Y_0 = 8|T = 1) = 0.25$
 $P(Y_1 = 10|T = 0) = 0.75$
 $P(Y_1 = 10|T = 1) = 0.25$

 (Y_0, Y_1) are not independent of T

Gender	T: Treatment	Y ₀ : Sugar levels had they received treatmen t 0	Y ₁ : Sugar levels had they received treatmen t 1	Y: Observ ed sugar levels
М	0	8	10	8
М	0	8	10	8
М	0	8	10	8
М	1	8	10	10
F	0	4	6	4
F	1	4	6	6
F	1	4	6	6
F	1	4	6	6

Treatment Assignment Is Not Random!

$$P(Y_0 = 4|T = 0, G = F) = 1$$

 $P(Y_0 = 4|T = 1, G = F) = 1$
 $P(Y_1 = 6|T = 0, G = F) = 1$
 $P(Y_1 = 6|T = 1, G = F) = 1$

(Y₀, Y₁) are independent of T conditioned on G=M, and conditioned on G=F

$$(Y_0, Y_1) \perp T \mid G$$

Gender	T: Treatment	Y ₀ : Sugar levels had they received treatmen t 0	Y ₁ : Sugar levels had they received treatmen t 1	Y: Observ ed sugar levels
М	0	8	10	8
М	0	8	10	8
М	0	8	10	8
М	1	8	10	10
F	0	4	6	4
F	1	4	6	6
F	1	4	6	6
F	1	4	6	6

No Unmeasured Confounding!

If We Cannot Randomize Treatment?

- •We can still succeed if the treatment assignment process is *conditionally randomized*, conditioned on an observed quantity.
- •This is actually just a way of saying we have no unmeasured confounding.

"The Assumptions"

Sufficient conditions for us to identify the causal effect in an observational study?

- No unmeasured confounders
- Common support

Ignorability - No Unmeasured Confounding

$$(Y_0, Y_1) \perp \!\!\!\perp T \mid x$$

The potential outcomes are independent of treatment assignment, conditioned on observed covariates x

Failure: In the example above, gender was associated with the potential outcomes **and** treatment assignment

Unverifiable from data!

Common Support Assumption

Y₀, Y₁: potential outcomes for control and treated

x: unit covariates (features)

T: treatment assignment

We assume:

$$p(T = t | X = x) > 0 \forall t, x$$

Example: Running an observational study

- Check your assumptions and design!
- Is there reason to believe no unmeasured confounding holds? Use domain knowledge
- More generally, do you believe ignorability holds?
- If not change the design:
 - Add more variables
 - Measure treatment differently
 - Measure outcome differently

Example: Running an observational study

Comparing effectiveness of two anti-hypertensive medications:

- Treatment: first administration of medication
- Outcome: blood pressure 3 months after first treatment
 But is outcome only measured for some of the patients?
- Did we measure the important known causes of hypertension? Literature survey may reveal that high alcohol use is a known cause of hypertension
- Doctors know this, and might use this information in deciding on treatment
- If we don't measure alcohol use, it becomes hidden confounder which might bias our conclusions

Check for Overlap

- Check for overlap between treated and control on important univariate and bivariate variables, e.g. age, gender, weight in a medical study
- If no overlap, redefine study population, e.g. only people ages 40-60

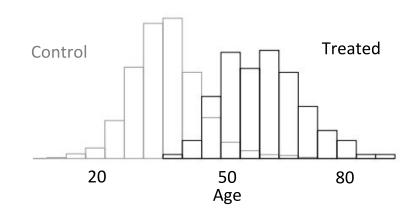
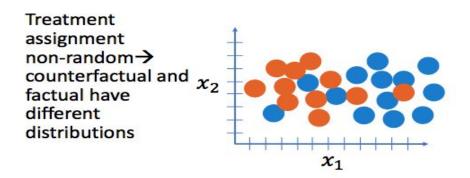


Figure: Hill & Gelman

What Else Can We Use? Propensity Score!

- Extremely widely used tool
- Basic idea: turn
 observational study into a
 pseudo-randomized trial by
 correcting for non-random
 sampling



- \bullet Control, t=0
- \blacksquare Treated, t=1

Propensity Score

- $(Y_0, Y_1) \perp T \mid x$
- What functions of f(x) will still allow $(Y_0, Y_1) \perp T \mid f(x)$?
- Theorem: Let e(x) = p(T = 1|x), also called the **propensity score**. If ignorability holds for x, then e(x) is the coarsest function of x for which ignorability still holds
- If we have ignorability, in theory the propensity score gives us everything we need
- We can run covariate adjustment on the propensity score! $\mathbb{E}[Y|e(x), T=1] \mathbb{E}[Y|e(x), T=0]$
- Other methods using propensity which we will see soon:
 - Inverse propensity score weighting
 - Propensity score matching
 - Stratification on the propensity score

Propensity Score

- e(x) = p(T = 1|x), the treatment assignment mechanism
- In most cases must be estimated from data
- Can use any machine learning method: logistic regression, random forests, neural nets
- Unlike most ML applications, we need to get the probability itself accurately
- Subtle point: if we include x which are only predictive of treatment assignment but not outcome
- Hard (but not impossible) to validate models

Propensity Score - Algorithm for ATE Estimation

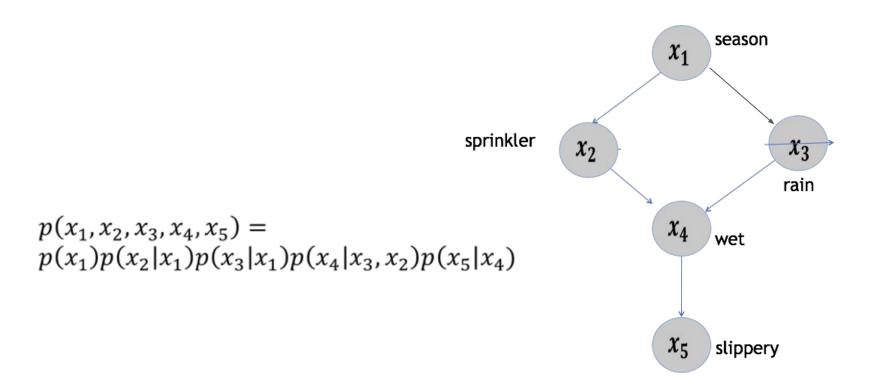
- *How to calculate ATE with propensity score for sample $(x_1, t_1, y_1), ..., (x_n, t_n, y_n)$
 - 1. Use any ML method to estimate $\hat{p}(T = t|x)$

2.
$$A\hat{T}E = \frac{1}{n} \sum_{i \text{ s.t. } t_i = 1} \frac{y_i}{\hat{p}(t_i = 1|x_i)} - \frac{1}{n} \sum_{i \text{ s.t. } t_i = 0} \frac{y_i}{\hat{p}(t_i = 0|x_i)}$$

Not Covered: Propensity Score Matching

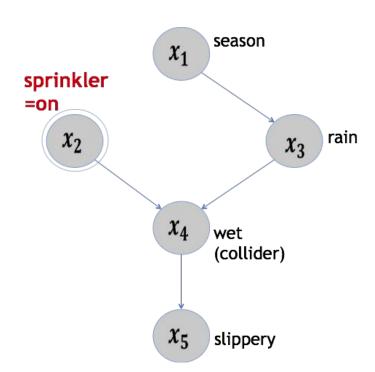
- 1. What is confounding?
- 2. Why causal reasoning?
- 3. Potential Outcomes and Propensity Scoring
- 4. Pearlean Causal Graphs Framework
- 5. Project ideas

Pearlean Causal Framework



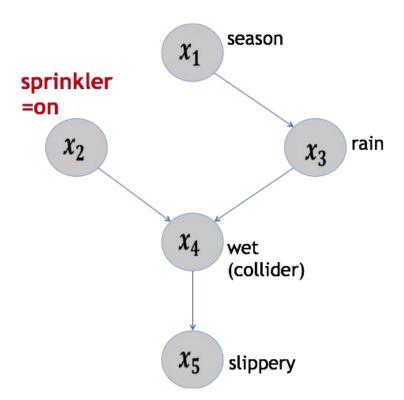
Intervention

- Turn the sprinkler on, please
- We removed the association between season and sprinkler
- We are now in a new world, where the sprinkler is set to on
- This is the do-operator



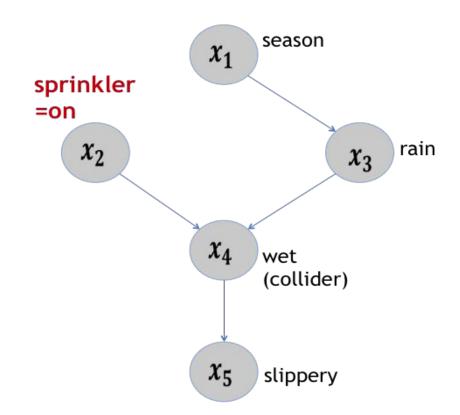
Intervention (do-Calculus)

- $p_{do(x_2=on)}(x_1, x_3, x_4, x_5) = p(x_1)p(x_3|x_1)p(x_4|x_3, x_2 = on)p(x_5|x_4)$
- $p(x_1, x_3, x_4, x_5 | x_2 = on) =$ $p(x_1 | x_2 = on) p(x_3 | x_1, x_2 = on) \cdot$ $p(x_4 | x_3, x_2 = on) p(x_5 | x_4, x_2 = on)$



do-operator versus conditioning

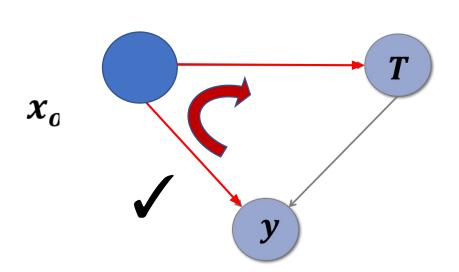
- $p(x_1, x_3, x_4, x_5 | do(x_2) = on)$ distribution under an **action**
- $p(x_1, x_3, x_4, x_5 | x_2 = on)$ distribution given **evidence**

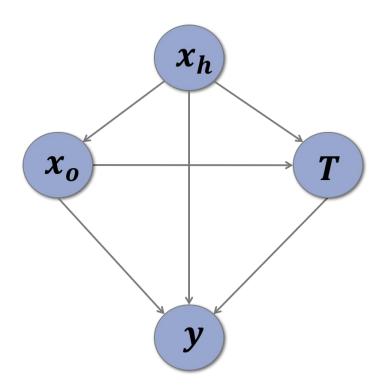


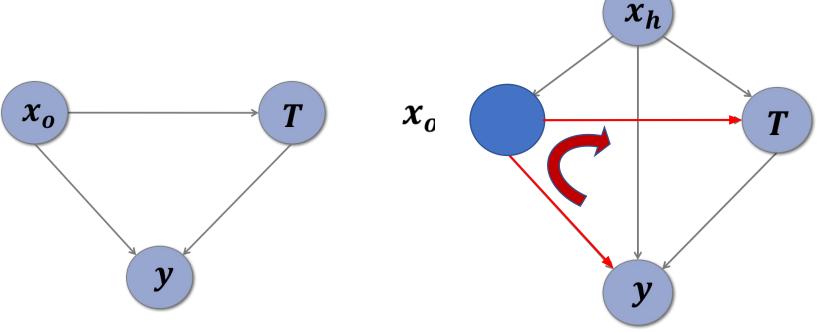
- Can we infer p(y|do(v)) from some observed p(y, v, x)?
- If there are $p_1(y|do(v)) \neq p_2(y|do(v))$ that are both consistent with p(y,v,x) then the answer is no
- How can we tell if p(y|do(v)) is uniquely determined by p(y,v,x)?
- Causal graphs give us many different sufficient conditions
- Without knowing the causal graph, the same observable distribution can result from two very different causal processes
- Very different conclusions about which treatment we should use
- Causal graphs can give us sufficient conditions for when causal queries p(y|do(v)) are identifiable from an observed distribution
- Causal graphs encode extra knowledge!

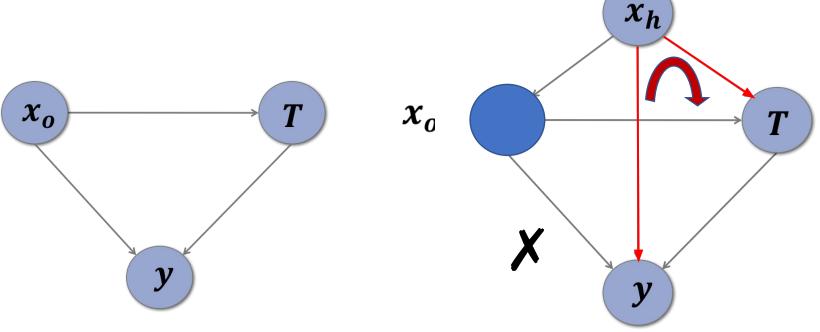
Backdoor Criteria

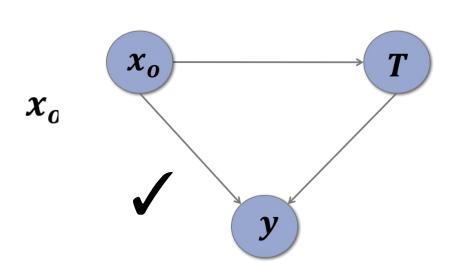
- Back-door criterion (Pearl, 1993, 2009):
 The observed variables d-separate all paths between y and T that end with an arrow pointing to T
- Tells us what can we measure that will ensure causal identifiability
- A set of variables Z satisfies the back-door criterion relative to the ordered pair (T,Y) if:
 - No node in Z is a descendant of T; and
 - 2. Z blocks (in the d-separation sense) every path between T and Y that contains an arrow into T

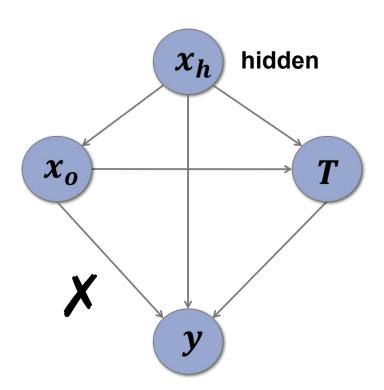




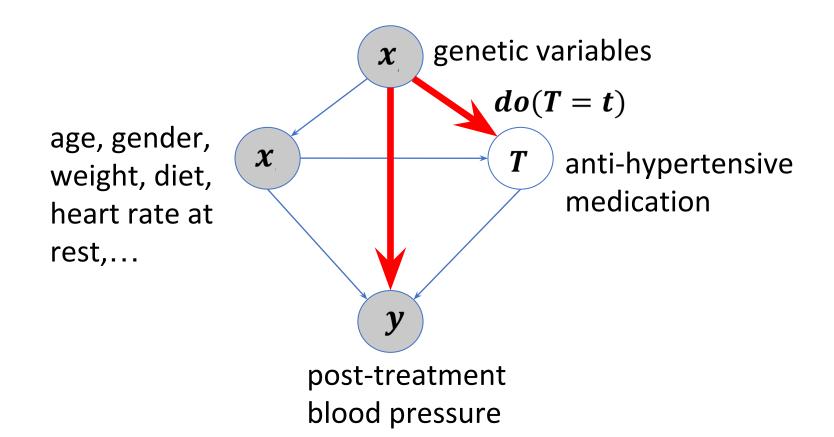








Unidentifiable Causal Effect



Simpson's Paradox

	Drug	No drug
Men	81 out of 87 recovered (93%)	234 out of 270 recovered (87%)
Women	192 out of 263 recovered (73%)	55 out of 80 recovered (69%)
Combined data	273 out of 350 recovered (78%)	289 out of 350 recovered (83%)

- Why is this a paradox? "When my parts are summed, am I less than some of my parts?"
- Should doctors focus on gender? Can you spot the lurking variable?

Main Takeaways

- Supervised learning has limitations
- RCTs are expensive AND limited; think causally especially for clinical data
- Pearl's and Rubin's frameworks provide foundational formalism for causal effect estimation
- Not all effects are identifiable
- Most research questions cater to how to relax all the assumptions we made along the way!

Course Reminders!

- Submit the weekly reflection questions to MarkUs!
- Start the homework!
 Q/A session on the problem sets
 Wednesday, Jan 23 at 4-6pm in GB 405
 Monday, Feb 4 at 4-6pm in SS 1071
- Sign up for a paper presentation slot!
- Think about your projects!