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Schedule

Jan 10, 2019, Lecture 1: Why is healthcare unique?
Jan 17, 2019, Lecture 2: Supervised Learning for Classification, Risk Scores and Survival

Jan 24, 2019, Lecture 3: Causal inference with observational data
Jan 31, 2019, Lecture 4: Fairness, Ethics, and Healthcare

Feb 7, 2019, Lecture 5: Clinical Time Series Modelling (Homework 1 due at 11:59 PM on MarkUs)
Feb 14, 2019, Lecture 6: Clinical Imaging (Project proposals due at 5PM on MarkUs)
Feb 21, 2019, Lecture 7: Clinical NLP and Audio

Feb 28, 2019, Lecture 8: Clinical Reinforcement Learning

Mar 7, 2019, Lecture 9: Missingness and Representations

Mar 14, 2019, Lecture 10: Generalization and transfer learning

Mar 21, 2019, Lecture 11: Interpretability / Humans-In-The-Loop / Policies and Politics

Mar 28, 2019, Course Presentations
April 4, 2019, Course Presentations (Project report due 11:59PM)
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Motivational Questions

e Find which medication A/B is best for diabetics?
e Should | deploy this new feature in company’s product?

e Would this person be rejected for the job had their name been different?



Bring in the Machine Learning Hammer

e Supervised Classification only learns “associations” p(y|x)
X = [lab_tests, diagnoses, medications]
y = [severely_diabetic]

e Mostly just correlations



Can you spot the confounding?
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Consider the Optics?

e Does eating ice-cream cause death by
drowning?

¢ [s something else causing both these
phenomena?

e (Could we realistically have some
randomly chosen humans eat lots of
ice-cream and see if what happens?

¢ In a healthcare setting, one cannot risk
death because of the treatment!

Confounding!

drowning




Randomized Controlled Trials Vs. Observational Data
NI ynneen

treatment
A or B



Randomized Controlled Trials

Poor Socio-economic class . Wealthy

treatment
A or B



More Common: Observational Setting

Poor Socio-economic class . Wealthy

treatment
A or B



Clinical Setting

e RCTs are also known as “clinical trials”
e Tens of thousands every year, costing tens of billions of dollars
e Every new medication must pass several stages of RCTs before
approval for human use

e (Observational study
e Use existing data, tracking people’s medications and blood sugar
e Problem: the space of possible confounders
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Supervised Learning Isn’t Enough

e This is not a classic supervised learning problem; our model was optimized
to predict outcome, not to differentiate the influence of A vs. B

e What if our high-dimensional model threw away the feature of medication
A/B?

e Hidden confounding: Maybe using B is worse than A, but rich patients
usually take B and richer people also have better health outcomes.

e |f we don’t know whether a patient is rich or not, we might conclude B is
better
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Causal Hierarchy (not captured by mere associations)

Observational Questions: “What if we see A”

Action Questions: “What if we do A?”

Counterfactuals Questions: “What if we did things differently?”

e Options: “With what probability?”
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Two foundational ways to think of Causality

e Potential Outcomes (Rubin, Neyman)
e (Causal Graphical Models (Judea Pearl)

Either framework requires manipulating reality
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Potential Outcomes

e Unit: a person, a bacteria, a company, a school, a website, a family, a
piece of metal, ...

e Treatments / actions / interventions (A/B)

e Potential outcomes
Y1: the unit’s outcome had they been subjected to treatment t=1

Y0: the unit’s outcome had they been subjected to treatment t=0. If number
of treatments is T, we have T potential outcomes (T possibly infinite)

e |n observations, a single unit gets one of the T treatments
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Inferring under this framework requires assumptions

SUTVA: Stable Unit Treatment Value Assumption

¢ The potential outcomes for any unit do not vary with the treatments
assigned to other units

Failure example: vaccination, network effects

e For each unit, there are no different forms or versions of each treatment
level, which lead to different potential outcomes

Failure example: some people get out-of-date medication

e Consistency: p(Yt=y|X=x, T=t) = p(Y = y| X=x, T=t)
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Potential Outcomes Formalized

*e Sampleofunitsi =1,...,n
* Each has potential outcomes (Y, Y1), ..., (YJ, Y™)
* Individual Treatment Effect for unit i: _ .
ITE; =Y, —Y;
* Average Treatment Effect over the samplen
_1 i i
ATEfinice = ) Y1 = Yo
i=1

* Usually: assume some joint distribution p(Yy, Y;)
ATE = E[Y; — Y, ]

* Define average over which population (“diabetics living in Israel over age 65”)
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Blood Pressure and Age

y =
blood_pres.

@ Treated
@ Control

.+ Counterfactual control

*

X =age
. : Counterfactual treated



“The fundamental problem of
causal inference”

We only ever observe one of
the two outcomes



Estimation Example

Gender Treatment Y,: Sugar levels Y,: Sugar levels Y:
had they received | had they received Observed sugar levels
treatment 0 treatment 1
M 0 8 10 8
M 0 8 10 8
M 0 8 10 8
M 1 8 10 10
F 0 4 6 4
F 1 4 6 6
F 1 4 6 6
F 1 4 6 6
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Estimation

*True treatment effect:
lE[Yl — Yo] — 2

E[Y|t = 1] — E[Y|t = 0] =
1
Z(lo+6+6+6)+

1
Z(8+8+8+4)=

7-7 =0

Gender | Treatm | Y,: Sugar | Y,: Sugar Y
ent levels levels |Observed sugar
had they | had they levels
received | received
treatment | treatment
0 1
M 0 8 10 8
M 0 8 10 8
M 0 8 10 8
M 1 8 10 10
F 0 4 6 4
F 1 4 6 6
F 1 4 6 6
F 1 4 6 6




Estimation

®*True treatment effect:
1E[Y1 - Yo] = 2

E[Y|t=1] =7
E[Y|t =0] = 7
E[Y|t = 0, Gender = M]
E[Y|t = 1, Gender = M]
E[Y|t = 0, Gender = F|
E[Y|t = 1, Gender = F|

Within each group
we get the true
treatment effect!

Gender | Treatm | Y,: Sugar | Y,: Sugar Y:
ent levels levels |Observed sugar
had they | had they levels
received | received
treatment | treatment
0 1
M 0 8 10 8
M 0 8 10 8
M 0 8 10 8
M 1 8 10 10
F 0 4 6 4
F 1 4 6 6
F 1 4 6 6
F 1 4 6 6




Treatment Assignment Mechanism

0 if gender=F,
1

G
G=1 if gender=M

Y, = 4+4*G
Y, = 4+4*G+2

Gender | Treatm | Y,: Sugar | Y,: Sugar Y:
ent levels levels |Observed sugar
had they | had they levels
received | received
treatment | treatment
0 1
M 0 8 10 8
M 0 8 10 8
M 0 8 10 8
M 1 8 10 10
F 0 4 6 4
F 1 4 6 6
F 1 4 6 6
F 1 4 6 6
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Random Treatment Assignments

They work because it allows to get expectations from
observations!

°.Treatment is random: e Treatment is random:
Yo, Y1) UL T Yo, Y1) UL T

S ]E[Yl] —_— hd IE[Yo] -

s E[V1|T = 1] = * E[Y,|T = 0] =

® [E[YobslT — 1] ® ]E[YObSIT - O]

Can be estimated from data Can be estimated from data
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Completely Random Treatment Assignments

They work because it allows to get expectations from
observations!

°.Treatment is random: e Treatment is random:
(Yo, Y1) L T Yo, Y1) L T
o ]E[Yl] p— ® IE[Yo] =
s EIIT = 1] = * E[Yo|T = 0] =
® [E[YobslT = 1] ° ]E[YObSIT = 0]
Can be estimated from data Can be estimated from data
ATE = E[Y, — Y,] = Note the difference because
E[Y,] - IEl[YO] 2 unobservable quantities (potential outcomes)

E[Y,,|T = 1] - E[Y,,<|T = O] and observable quantities
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Treatment Assignment Is Not Random!

Gender Treatment Y,: Sugar levels Y,: Sugar levels Y:
had they received | had they received Observed sugar levels
treatment 0 treatment 1
M 0 8 10 8
M 0 8 10 8
M 0 8 10 8
M 1 8 10 10
F 0 4 6 4
F 1 4 6 6
F 1 4 6 6
F 1 4 6 6

33



Treatment Assignment Is Not Random!

P(Y, = 8|T = 0) = 0.75
P(Y, = 8|T = 1) = 0.25
P(Y, = 10|T = 0) = 0.75
P(Y, = 10|T = 1) = 0.25

(Yy, Y;) are not
independent of T

Gender T: Y,: Sugar | Y,: Sugar Y:
Treatment levels levels Observ
had they | had they | ed
received | received | sugar
treatmen | treatmen | levels
to t1
M 0 8 10 8
M 0 8 10 8
M 0 8 10 8
M 1 8 10 10
F 0 4 6 4
F 1 4 6 6
F 1 4 6 6
F 1 4 6 6




Treatment Assignment Is Not Random!

P(Y,=4|T=0,6=F) =1
P(Y,=4|T=1,6=F)=1
P(Y, =6|T=0,G=F)=1
P(Y,=6T=1,G6=F)=1

(Y,,Y,) are independent of T
conditioned on
G=M, and conditioned on G=F

(Yo, Y7) L T|G

No Unmeasured Confounding!
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Gender T Yo: Sugar | Y,: Sugar | Y
Treatment levels levels | Observ
had they | had they | ed
received | received | sugar
treatmen | treatmen | levels
to t1
M 0 8 10 8
M 0 8 10 8
M 0 8 10 8
M 1 8 10 10
F 0 4 6 4
F 1 E 6 6
F 1 - 6 6
F 1 4 6 6




If We Cannot Randomize Treatment?

*\We can still succeed if the treatment assignment process is conditionally
randomized, conditioned on an observed quantity.

eThis is actually just a way of saying we have no unmeasured confounding.



“The Assumptions”

Sufficient conditions for us to identify the causal effect in an
observational study?

® No unmeasured confounders

e Common support



lgnorability - No Unmeasured Confounding

(Yo, Y1) LT [ x

The potential outcomes are independent of treatment
assignment, conditioned on observed covariates x

Failure: In the example above, gender was associated
with the potential outcomes and treatment assignment

Unverifiable from data!



Common Support Assumption

*Y,, Y;: potential outcomes for control and treated
x: unit covariates (features)
T: treatment assignment

We assume:

p(T=t|X=x)>0Vtx
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Example: Running an observational study

e Check your assumptions and design!

e |s there reason to believe no unmeasured confounding holds? Use domain
knowledge

e More generally, do you believe ignorability holds?

e |f not - change the design:
e Add more variables
e Measure treatment differently
e Measure outcome differently

40



Example: Running an observational study

Comparing effectiveness of two anti-hypertensive medications:

e Treatment: first administration of medication
e Qutcome: blood pressure 3 months after first treatment

But is outcome only measured for some of the patients?

e Did we measure the important known causes of hypertension? Literature
survey may reveal that high alcohol use is a known cause of hypertension

e Doctors know this, and might use this information in deciding on treatment

e |f we don’t measure alcohol use, it becomes hidden confounder which
might bias our conclusions

41



Check for Overlap

Check for overlap between
treated and control on important
univariate and bivariate variables,
e.g. age, gender, weight in a
medical study

If no overlap, redefine study
population, e.g. only people ages
40-60

42

Control —_— Treated
20 50 80
Age
Figure:

Hill & Gelman



What Else Can We Use? Propensity Score!

e Extremely widely used tool i
aSS|gnment

non-random—>
o counterfactualand
e Basic idea: turn factual have

. . different
observational stgdy |nt.o a SEEB I
pseudo-randomized trial by = e
correcting for non-random

sampling

IIII]

@® Control,t =0
® Treated, t =1
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Propensity Score

* Yo, Y1) LT|x
* What functions of f(x) will still allow
(Yo, Y1) LT | f(x)?
* Theorem:
Let e(x) = p(T = 1|x), also called the propensity score.

If ignorability holds for x, then e(x) is the coarsest function of x for
which ignorability still holds

* If we have ignorability, in theory the propensity score gives us
everything we need

* We can run covariate adjustment on the propensity score!
E[Y|e(x), T = 1] — E[Y]e(x), T = 0]
* Other methods using propensity which we will see soon:
* Inverse propensity score weighting

* Propensity score matching
* Stratification on the propensity score

44



Propensity Score

* e(x) = p(T = 1]x), the treatment assignment mechanism
* In most cases must be estimated from data

* Can use any machine learning method:
logistic regression, random forests, neural nets

* Unlike most ML applications, we need to get the probability itself
accurately

* Subtle point: if we include x which are only predictive of treatment
assignment but not outcome

* Hard (but not impossible) to validate models

45



Propensity Score - Algorithm for ATE Estimation

* How to calculate ATE with propensity score
for sample (xy, t1,¥1), ., (X, tn, Yn)

1. Use any ML method to estimate p(T = t|x)

- 1 Yi 1 Yi
ATE = — S —
2 n Z bt =1z) n Z p(t; = 0|z;)

is.t. 1 i s.t. t;=0

Not Covered: Propensity Score Matching
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Pearlean Causal Framework

sprinkler

P(x1, X2,X3, Xy, xs) =
p(x1)p(xz|x1)p(x3]x1 ) p (x4 |x3, x5)p (x5]x4)
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Intervention

¢ Turn the sprinkler on, please

e \We removed the association between
season and sprinkler

e We are now in a new world, where
the sprinkler is set to on

e This is the do-operator

49
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Intervention (do-Calculus)

® Pdo(x,=0n) (x1, X3, X4, X5 ) =
p(x)p(x3|x))p(x4]|x3, x2 = on)p(xs5|x4)

 p(x41,X3, X4, Xs|X2 = ON) =
p(x1]|x; = on)p(x3|xq,x, = on) -
p(x4lx3,x, = on)p(xs|xs, x, = 0on)

50
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do-operator versus conditioning

sprinkler
=on

X2

¢ p(xll X3,X4,X5 |d0(x2) = On)
distribution under an action

* p(x1, X3, X4, X5|x, = ON)
distribution given evidence

51
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The Assumptions: Causal Identifiability

* Can we infer p(y|do(v)) from some observed p(y, v, x)?

* If there are p; (y|do(v)) # p,(y|do(v)) that are both consistent
with p(y, v, x) then the answer is no

 How can we tell if p(y|do(v)) is uniquely determined by p(y, v, x)?
* Causal graphs give us many different sufficient conditions

* Without knowing the causal graph, the same observable distribution
can result from two very different causal processes

* Very different conclusions about which treatment we should use

* Causal graphs can give us sufficient conditions for when causal
queries p(y|do(v)) are identifiable from an observed distribution

e Causal graphs encode extra knowledge!



Backdoor Criteria

* Back-door criterion (Pearl, 1993, 2009):
The observed variables d-separate all paths between
vy and T that end with an arrow pointing to T

* Tells us what can we measure that
will ensure causal identifiability

e A set of variables Z satisfies the back-door criterion
relative to the ordered pair (T,Y) if:
1. No nodein Z is a descendant of T; and
2. Zblocks (in the d-separation sense) every path
between T and Y that contains an arrow into T
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The Assumptions: Causal Identifiability

- Back-door criterion:
The observed variables d-separate all
paths between y and T that end with an

arrow pointingto T

C

v/
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The Assumptions: Causal Identifiability

- Back-door criterion:
The observed variables d-separate all
paths between y and T that end with an
arrow pointingto T
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The observed variables d-separate all
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The Assumptions: Causal Identifiability

- Back-door criterion:
The observed variables d-separate all
paths between y and T that end with an

arrow pointingto T
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hidden




Unidentifiable Causal Effect

age, gender, | |
weight, diet anti-hypertensive
heart rate at medication

rest,...

post-treatment
blood pressure



Simpson’s Paradox

No drug

Drug
Men 81 out of 87 recovered (93%)
Women 192 out of 263 recovered (73%)
Combined data 273 out of 350 recovered (78%)

234 out of 270 recovered (87%)
55 out of 80 recovered (69%)
289 out of 350 recovered (83%)

of my parts?”

59

Why is this a paradox? “When my parts are summed, am | less than some

Should doctors focus on gender? Can you spot the lurking variable?



Main Takeaways

e Supervised learning has limitations
e RCTs are expensive AND limited; think causally especially for clinical data

e Pearl’s and Rubin’s frameworks provide foundational formalism for causal
effect estimation

e Not all effects are identifiable

e Most research questions cater to how to relax all the assumptions we made
along the way!



Course Reminders!

e Submit the weekly reflection questions to MarkUs!

e Start the homework!

Q/A session on the problem sets
Wednesday, Jan 23 at 4-6pm in GB 405

Monday, Feb 4 at 4-6pm in SS 1071
e Sign up for a paper presentation slot!

¢ Think about your projects!

61



